Diabetes Mellitus in Small Animals

Julie A Stephens, DVM, DACVIM
Veterinary Emergency And Specialty Center of New Mexico
Albuquerque, New Mexico
Diabetes Mellitus

“Persistent hyperglycemia caused by a relative or absolute insulin deficiency”

Not a single disease but a syndrome that results in hyperglycemia

- Defects in insulin secretion
- Defects in insulin sensitivity
Insulin

• Produced by β-cells of the islets of Langerhans in the pancreas
• Associated with energy abundance
• Binds to insulin receptor on it’s target cell
 • Enzyme linked receptor
 • Binds to alpha subunits outside the cell
 • Beta subunits become autophosphorylated >> activates local tyrosine kinase >> phosphorylation of insulin-receptor substrates [IRS]
 • Different IRS are expressed in different tissues
 • Increases uptake of glucose
 • Muscle cells
 • Adipose tissue
 • NOT neurons in the brain
Insulin

• Glucose transport – within seconds
 • Translocation of multiple intracellular vesicles which contain multiple molecules of glucose transport proteins to the cell membrane
 • Glucose transport proteins bind to cell membrane and facilitate uptake of glucose into the cells
 • When insulin is no longer available vesicles separate from the cell membrane within 3-5 minutes >> move intracellularly and are reused

• Cell membrane permeable to amino acids, potassium and phosphate ions
 • Move intracellularly

• Slower effects
 • In 10-15 minutes, changes activity of intracellular metabolism via phosphorylation of enzymes
 • Over hours to days, changes translation of mRNA in ribosomes and transcription of DNA in the nucleus of the cells >> molds cellular enzymes activity to achieve metabolic effects
Carbohydrate Metabolism

• Cause rapid secretion of insulin once in the blood stream
• Muscles
 • During rest, use fatty acids for energy
 • During moderate to heavy exercise, muscle contraction increased translocation of GLUT 4 from intracellular stores >> facilitates diffusion of glucose into the muscle cell
 • Few hours after meals, high insulin secretion causes rapid transport of glucose into muscle cells >> can be stored as glycogen in the muscle cell and used later for energy
Carbohydrate Metabolism

• Liver

 • Insulin causes storage of glucose as glycogen
 • Inactivates liver phosphorylation >> prevent break down of glycogen
 • Enhances uptake of glucose by hepatocytes
 • Increased activity of glucokinase [phosphorylates glucose>> taps it in the hepatocyte]
 • Increases activity of enzymes that promote glycogen synthesis
 • Glycogen synthase

 • Decreased insulin
 • Reverses effect >> decreases glycogen synthesis and prevents further uptake of glucose by hepatocytes
 • Increases splitting of glycogen into glucose [activates phosphorylase and glucose phosphatase enzymes]

 • Insulin promotes conversion of excess glucose into fatty acids
 • LVDL triglyceride production >> transported to adipose tissue
Carbohydrate Metabolism

• Most brain cells are permeable to glucose and can use glucose without the intermediation of insulin

• When blood glucose is very low >> hypoglycemic shock
 • Progressive nervous irritability
 • Fainting
 • Seizures
 • Coma
Fat Metabolism

• Increased transport of glucose into hepatocytes
 • After glycogen concentration in the hepatocytes reaches 5-6%, further glycogen synthesis is inhibited
 • Fatty acids synthesized >> transported in VLDL as triglycerides

• Insulin activates lipoprotein lipase in capillary walls
 • Splits triglycerides back into fatty acids >> absorbed into adipocytes >> converted to triglycerides and stored as fat

• Insulin inhibits lipase
 • Release of fatty acids from fat stores is inhibited

• Insulin promotes glucose transport into adipocytes
 • Ultimately increases glycerol >> combines with fatty acids to form triglyceride
Fat Metabolism

• Insulin deficiency
 • Lipase is strongly activated in the absence of insulin
 • Hydrolysis of stored triglycerides >> release of fatty acids
 • Fatty acids used for energy
 • Increased conversation of fatty acids into cholesterol and phospholipids
 • High cholesterol promotes development of atherosclerosis in people with DM
 • Causes excess acetoacetic acid formation in the liver >> blood >> intracellularly >> energy [acetyl-CoA]
 • Lack of insulin also depresses utilization of acetoacetic acid in peripheral tissue >> acidosis
 • Some acetoacetic acid gets converted to ketones bodies [β-hydroxybutyric acid and acetone] >> ketosis
Protein Metabolism

• Insulin
 • Stimulates transport of amino acids into cells
 • Increases translation of mRNA >> Promotes new protein synthesis
 • Increases transcription of select DNA genetic sequences>> Promotes new protein synthesis
 • Inhibits catabolism of proteins
 • Diminishes normal degradation of protein in cellular lysosomes
 • In hepatocytes, depresses the rate of gluconeogenesis [from amino acids]

• Insulin deficiency
 • Increased protein degradation
 • Amino acids used for energy
 • Increased urea secretion by the kidneys
 • Protein synthesis stops
 • Weakness
Diabetes Mellitus

• Caused by
 • Lack of insulin secretion
 • Decreased sensitivity of the tissues to insulin

• Syndrome of impaired carbohydrate, fat and protein metabolism
 • Insulin deficiency or insulin resistance
 • Results in increased blood glucose concentration
 • Decreased cellular utilization of glucose
 • Increased utilization of fat and protein
Diabetes Mellitus

• Blood glucose rises >> spillage of excessive glucose into the urine
 • Polyuria [osmotic diuresis]

• High blood glucose >> cellular dehydration [osmotic pressure]
 • Polydipsia

• Increased utilization of fats for energy
 • Release of keto acids >> metabolic acidosis
 • Rapid deep breathing pattern [Kussmal breathing]

• Depletion of body proteins
 • Weight loss
 • Asthenia [lack of energy]
 • Polyphagia
Diagnosis

• Appropriate clinical signs
 • PU/PD/PP
 • Weight loss

• Persistent fasting hyperglycemia

• Glucosuria
Diabetes Mellitus

• **Type 1**
 • Deficiency of insulin production by pancreatic islet β-cells – usually absolute deficiency
 • Viral infection
 • Autoimmune – cell mediated
 • Hereditary
 • Typically occurs abruptly
 • Over days to weeks

• **Type 2**
 • Usually relative insulin deficiency
 • Resistance to metabolic effects of insulin
 • Hyperinsulinemia due to target cell resistance
 • Gradual onset
 • Obesity
 • Excessive glucocorticoids
 • Excessive growth hormone [acromegaly]
 • Pregnancy
 • Autoantibodies/mutations to insulin receptor
Canine

• Type 1 most common
 • Have been associations found between three specific haplotypes and DLA [MHC] genotypes in diabetes-prone breeds of dogs

• Pancreatitis

• Insulin resistance
 • Hyperadrenocorticism
 • Diabetogenic drugs – pre-existing β-cell defect, islet pathology
 • Steroids – glucocorticoids, progestin
 • Obesity – does not play a significant role although does produce insulin resistance

• Gestational/diestrus induced diabetes mellitus
 • Progesterone induced growth hormone secretion >> insulin resistance, carbohydrate intolerance
 • Diabetic remission possible after resolution of diestrus
Feline

- Secretory failure
 - Damaged pancreatic islet β-cells
 - Amyloid deposition >> cytotoxicity > apoptosis
 - Glucose toxicity
 - Oxidative stress and inflammatory cytokines??
 - Dependent on degree of hyperglycemia and duration of hyperglycemic state
 - Lipid toxicity
 - Increased fatty acids >> cell death

- Commonly Type 2
 - Insulin resistance cause by
 - Obesity
 - Decreased expression of GLUT4 transporter in muscle and fat
 - Decreased adiponectin >> decreased insulin sensitivity, decreased anti-inflammatory
 - Leptin modulates insulin sensitivity – obese cats are leptin resistant
 - Acromegaly*
 - Diabetogenic drugs* - pre-existing β-cell defect, islet pathology
 - Steroids – glucocorticoids, progestin

*Type 3 in the American Diabetes Association scheme
Complications of uncontrolled DM

• Canine
 • Cataracts
 • Long term complication – days months or years
 • Irreversible
 • Lens induced uveitis
 • Diabetic retinopathy
 • Uncommon
 • Diabetic nephropathy
 • Occasionally reported
 • Hypertension
 • Incidence 46% (Struble, et al 1998)

• Feline
 • Peripheral neuropathy
Prognosis

Canine

• ~ 3 years average survival time
• High mortality rate un the first 6 months
 • DKA
 • Concurrent illness
 • Owner unwillingness to treat
• If survive the first 6 months, average survival time is ~ 5 years

Feline

• Variable
• If survive the first 6 months, average survival time is ~ 5 years
Treatment

INDIVIDUALIZED THERAPY

• Goal – good quality of life
 • Reduce blood glucose to control PU/PD/PP and weight loss
 • Prevent ketosis
 • Avoid hypoglycemia
Treatment

Canine

• Remission is not a goal
• Near euglycemia is not necessary
 • Increases risk of hypoglycemia and its consequences
Treatment - Canine

• Vetsulin

• NPH

• Detemir – very potent!!!!
 • 0.1 unit/kg
 • Very difficult to use in a small breed dog
 • High risk for hypoglycemia
 • Lack of ability to fine tune the dose
 • Can get a specific diluent from manufacturer

• Glargine, PZI – overall poor response
 • Maybe useful in an individual patient
Diet - Canine

Many specific diabetic diets available
 • Majority are high fiber
• Remains to be proven that these diets offer a clinically significant advantage
• Choose a diet based on
 • Comorbidity
 • Palatability to individual patient
 • Reliable intake of a steady amount of calories at regular intervals
Treatment - Feline

• Insulin
 • Longer acting insulins: Glargine, PZI, Detemir
 • Longer average duration of action >> improved glycemic control >> reduce glucotoxicity and lipotoxicity >> greater remission potential

• Oral hypoglycemic - not optimal if diabetic remission is a goal
 • Glipizide
 • Acarbose

• Addressing obesity if applicable
Diet - Feline

Goals

• Improve metabolism
• Correct obesity
• Remove persistent hyperglycemia
 • High protein
 • Low carbohydrate

Many specific diabetic diets available
Insulin Therapy
<table>
<thead>
<tr>
<th>Type of Insulin & Brand Names</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
<th>Role in Blood Sugar Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lispro (Humalog)</td>
<td>15-30 min.</td>
<td>30-90 min</td>
<td>3-5 hours</td>
<td>Rapid-acting insulin covers insulin needs for meals eaten at the same time as the injection. This type of insulin is often used with longer-acting insulin.</td>
</tr>
<tr>
<td>Aspart (Novolog)</td>
<td>10-20 min</td>
<td>40-50 min</td>
<td>3-5 hours</td>
<td></td>
</tr>
<tr>
<td>Glulisine (Apidra)</td>
<td>20-30 min</td>
<td>30-90 min</td>
<td>1-2 1/2 hours</td>
<td></td>
</tr>
<tr>
<td>Short-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular (R) or novolin</td>
<td>30 min. - 1 hour</td>
<td>2-5 hours</td>
<td>5-8 hours</td>
<td>Short-acting insulin covers insulin needs for meals eaten within 30-60 minutes.</td>
</tr>
<tr>
<td>Velosulin (for use in the insulin pump)</td>
<td>30 min.-1 hour</td>
<td>1-2 hours</td>
<td>2-3 hours</td>
<td></td>
</tr>
<tr>
<td>Intermediate-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH (N)</td>
<td>1-2 hours</td>
<td>4-12 hours</td>
<td>18-24 hours</td>
<td>Intermediate-acting insulin covers insulin needs for about half the day or overnight. This type of insulin is often combined with a rapid- or short-acting type.</td>
</tr>
</tbody>
</table>

Long-Acting

Insulin glargine (Basaglar, Lantus, Toujeo)	1-1 1/2 hours	No peak time, Insulin is delivered at a steady level.	20-24 hours	Long-acting insulin covers insulin needs for about one full day. This type is often combined, when needed, with rapid- or short-acting insulin.
Insulin detemir (Levemir)	1-2 hours	6-8 hours	Up to 24 hours	
Insulin degludec (Tresiba)	30-90 min	No peak time	42 hours	

Pre-Mixed*

Humulin 70/30	30 min.	2-4 hours	14-24 hours	These products are generally taken two or three times a day before mealtime.
Novolin 70/30	30 min.	2-12 hours	Up to 24 hours	
Novolog 70/30	10-20 min	1-4 hours	Up to 24 hours	
Humulin 50/50	30 min.	2-5 hours	18-24 hours	
Humalog mix 75/25	15 min.	30 min. - 2 1/2 hours	16-20 hours	

*Premixed insulins combine specific amounts of intermediate-acting and short-acting insulin in one bottle or insulin pen. (The numbers following the brand name indicate the percentage of each type of insulin.)

from wedmd
<table>
<thead>
<tr>
<th>Type of Insulin & Brand Names</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
<th>Role in Blood Sugar Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lispro (Humalog)</td>
<td>15-30 min.</td>
<td>30-90 min</td>
<td>3-5 hours</td>
<td>Rapid-acting insulin covers insulin needs for meals eaten at the same time as the injection. This type of insulin is often used with longer-acting insulin.</td>
</tr>
<tr>
<td>Aspart (Novolog)</td>
<td>10-20 min.</td>
<td>40-50 min</td>
<td>3-5 hours</td>
<td></td>
</tr>
<tr>
<td>Glulisine (Apidra)</td>
<td>20-30 min.</td>
<td>30-90 min</td>
<td>1-2 1/2 hours</td>
<td></td>
</tr>
<tr>
<td>Short-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Regular (Humulin R, Novolin R)</td>
<td>30 min.-1 hour</td>
<td>2-5 hours</td>
<td>5-8 hours</td>
<td>Short-acting insulin covers insulin needs for meals eaten within 30-60 minutes.</td>
</tr>
<tr>
<td>Velosulin (for use in the insulin pump)</td>
<td>30 min.-1 hour</td>
<td>1-2 hours</td>
<td>2-3 hours</td>
<td></td>
</tr>
<tr>
<td>Intermediate-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*NPH (Humulin N, Novolin N)</td>
<td>1-2 hours</td>
<td>4-12 hours</td>
<td>18-24 hours</td>
<td>Intermediate-acting insulin covers insulin needs for about half the day or overnight. This type of insulin is often combined with a rapid- or short-acting type.</td>
</tr>
</tbody>
</table>

Long-Acting

*Insulin glargine (Basaglar, Lantus, Toujeo)	1-1/2 hours	No peak time, insulin is delivered at a steady level.	20-24 hours	Long-acting insulin covers insulin needs for about one full day. This type is often combined, when needed, with rapid- or short-acting insulin.
*Insulin detemir (Levemir)	1-2 hours	6-8 hours	Up to 24 hours	
Insulin degludec (Tresiba)	30-90 min.	No peak time	42 hours	

Pre-Mixed*

Humulin 70/30	30 min.	2-4 hours	14-24 hours	These products are generally taken two or three times a day before mealtime.
Novolin 70/30	30 min.	2-12 hours	Up to 24 hours	
Novolog 70/30	10-20 min.	1-4 hours	Up to 24 hours	
Humulin 50/50	30 min.	2-5 hours	18-24 hours	
Humalog mix 75/25	15 min.	30 min.-2 1/2 hours	16-20 hours	

*Premixed insulins combine specific amounts of intermediate-acting and short-acting insulin in one bottle or insulin pen. (The numbers following the brand name indicate the percentage of each type of insulin.)
<table>
<thead>
<tr>
<th>Type of Insulin & Brand Names</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
<th>Role in Blood Sugar Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lispro (Humalog)</td>
<td>15-30 min.</td>
<td>30-90 min.</td>
<td>3-5 hours</td>
<td>Rapid-acting insulin covers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>insulin needs for meals eaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at the same time as the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>injection. This type of insulin is often used with longer-acting insulin.</td>
</tr>
<tr>
<td>Aspart (Novolog)</td>
<td>10-20 min.</td>
<td>40-50 min.</td>
<td>3-5 hours</td>
<td></td>
</tr>
<tr>
<td>Glulisine (Apidra)</td>
<td>20-30 min.</td>
<td>30-90 min.</td>
<td>1-2 1/2 hours</td>
<td></td>
</tr>
<tr>
<td>Short-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Regular (Humulin R, Novolin R)</td>
<td>30 min. - 1 hour</td>
<td>2-5 hours</td>
<td>5-8 hours</td>
<td>Short-acting insulin covers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>insulin needs for meals eaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>within 30-60 minutes.</td>
</tr>
<tr>
<td>Velosulin (for use in the insulin pump)</td>
<td>30 min. - 1 hour</td>
<td>1-2 hours</td>
<td>2-3 hours</td>
<td></td>
</tr>
<tr>
<td>Intermediate-Acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*NPH (Humulin N, Novolin N)</td>
<td>1-2 hours</td>
<td>4-12 hours</td>
<td>18-24 hours</td>
<td>Intermediate-acting insulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>covers insulin needs for about half the day or overnight. This type of insulin is often combined with a rapid- or short-acting type.</td>
</tr>
</tbody>
</table>

Long-Acting ProZinc

*Insulin glargine (Basaglar, Lantus, Toujeo)	1-1 1/2 hours	No peak time. Insulin is delivered at a steady level.	20-24 hours	Long-acting insulin covers insulin needs for about one full day. This type is often combined, when needed, with rapid- or short-acting insulin.
*Insulin detemir (Levemir)	1-2 hours	6-8 hours	Up to 24 hours	
Insulin degludec (Tresiba)	30-90 min.	No peak time	42 hours	

Pre-Mixed*

Humulin 70/30	30 min.	2-4 hours	14-24 hours	These products are generally taken two or three times a day before mealtime.
Novolin 70/30	30 min.	2-12 hours	Up to 24 hours	
Novolog 70/30	10-20 min.	1-4 hours	Up to 24 hours	
Humulin 50/50	30 min.	2-5 hours	18-24 hours	
Humalog mix 75/25	15 min.	30 min - 2 1/2 hours	16-20 hours	

*Premixed insulins combine specific amounts of intermediate-acting and short-acting insulin in one bottle or insulin pen. (The numbers following the brand name indicate the percentage of each type of insulin.)
Insulin Cost

• NPH insulin
 • Novolin N GoodRx: $104-154 for pet Rx [$24-28]
 • Humulin N GoodRx: $160-62 for pet Rx [$100]

• Glargine Good Rx: $262-285 for pet Rx [$184]

• Vetsulin Online pharmacies $36-43

• ProZinc Online pharmacies $96-126
Monitoring

Various tools available

• Clinical picture
 • Level of PU/PD/PP
 • Weight - loss or gain

• Spot check blood glucose
 • Beware of stress hyperglycemia
 • Good for revealing hypoglycemia, remission relapses
 • Not recommended to use to make daily or inter-day dosage changes to insulin

• Glucose curves
 • Glucose nadir
 • Time to onset of action
 • Duration of action of insulin
Monitoring

Home urine glucose monitoring

- Negative urine glucose should trigger checking a blood glucose check
- Stress hyperglycemia can cause glucosuria
- Checking for remission relapses
Glucose curves

Home blood glucose monitoring

- Increasingly popular
 - Stress free environment
 - More economical
 - Aids in preventing hypoglycemia and promoting diabetic remission in cats
- Owner AND pet must be willing/able

In clinic

- For patient who will not tolerate or owners that are uncomfortable/unable at home monitoring
 - Stress hyperglycemia

Continuous glucose monitors

- Can limit stress
- Cost – device, probe/curve
- Requires calibrations with peripheral blood glucose 1-3 times/day
Rapid metabolism of insulin

![Rapid metabolism of insulin graph](http://www.vetsulin.com/vet/images/Cats-Rapid-metabolism_small_rev.gif)

Somogyi

![Somogyi effect graph](http://www.vetsulin.com/vet/images/Cats-Somogyi-effect_small_rev.gif)
Insulin administered at time=0

Blood Glucose Concentration (mg/dL)

Time in Hours

Monitoring
Glycated proteins
- Fructosamine
 - Sampling artifacts that lower Fructosamine
 - Storage
 - Lipemia
 - Azotemia
 - Hypoproteinemia
 - Hypoglycemia-induced hyperglycemia will increase Fructosamine
 - Concurrent disease that effect protein catabolism can lower Fructosamine
 - Hyperthyroidism
- Glycosylated hemoglobin
 - Ac1
Roary
4 year old castrated male DSH

Lethargic
Decreased appetite

PE: normal vitals, normal rectal temperature

CBC – normal

Biochemical profile
 • Hyperglycemia 357
 • Hyponatremia 142
 • Hypercholesterolemia 490

UA
 • 3+ glucosuria
 • 3+ ketonuria
 • WBC, RBC
Does this cat have Diabetes mellitus?
What treatment should we use?
What insulin should we use?

Glargine OR PZI [ProZinc] insulin
Roary

• Treatments
 • IVF, Cefazolin
 • Glargine insulin
 • 1 unit SQ q 24 hrs
 • MD diet

Day 1
• 8am BG 106
• 11 am BG 198

Day 2
• 8 am BG 517
• 12 pm BG 266

Sent home on
 ▪ Glargine 2 u SQ q 12 hrs
 ▪ Amoxicillin for UTI
Roary

5 days after diagnosis
lethargic again
- BG 419
- Ketone 4.9

6 days after diagnosis at ER clinic
- BG 633

Treated with an insulin CRI
- Regular insulin

On day 8 after diagnosis
- Transition back to Glargine 2 u SQ
 - 8 pm BG 544
 - 11 pm BG 364

Day 9
- 2 am BG 300
- 5 am BG 469
- 8 am BG 428 – Glargine 3 u SQ
- 11 am BG 295
- 2 pm BG 150
- 5 pm BG 237
- 8 pm BG 583 – Glargine 3 u SQ

Day 10
- 2 am BG 85, 77
- 4 am BG 88
- 5 am BG 71
- 6 am BG 130
- 9 am BG 521
 - Glargine 3 u SQ
- 12 pm BG 391
- 3 pm BG 56
- 6 pm BG 205
- 9 pm BG 328
 - Glargine 1 u SQ
Roary

Day 11
• 12 am BG 390
• 3 am BG 249
• 6 am BG 598

Used combination of Glargine and Regular insulin

Discharged on Glargine 3 u SQ q12 hrs

Day 23 after diagnosis
Owner did “mini” curve at home
• 9am BG 583 – Glargine 3 u
• 2 pm BG 369
• 5 pm BG 367
• 7 pm BG 483
• 9 pm BG 488 – Glargine 3 u
• 7 am BG 269 – Glargine 3 u
Roary

Changed insulin dosing to

Glargine 4 u SQ in am and 3 u SQ in pm
Feline

• Diabetic remission?
 • Improve β-cell function
 • Treating hyperglycemia in a timely manner
 • Optimize glycemic control
 • Cats that develop DM later in life
 • Newly diagnosed DM that is treated effectively
 • Cats with diabetic neuropathy less likely to achieve remission
 • Reduced carbohydrate, high protein diet may help
 • Consistent diet type and calorie intake most important for a more predictable insulin requirement
Summary

• Persistent hyperglycemia causes by relative or absolute insulin deficiency
• Insulin effects carbohydrate, protein and fat metabolism
• Dogs generally have absolute insulin deficiency
• Cats generally have a relative insulin deficiency

• Treatment must be individualized
• Different treatment goals for dogs vs cats
• Monitoring must be individualized
• Technicians play a vital role in helping manage a diabetic patient